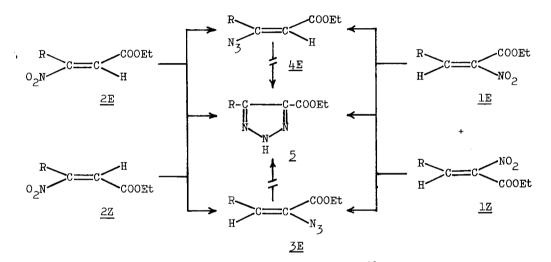
REACTION OF ETHYL α , β -UNSATURATED α - OR β -NITROCARBOXYLATES WITH SODIUM AZIDE

Chung-gi Shin, Yasuchika Yonezawa, and Juji Yoshimura* Laboratory of Organic Chemistry, Kanagawa University, Kanagawa-ku, Yokohama 221 *Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology, Meguro-ku, Tokyo 152

(Received in Japan 24 October 1973; received in UK for publication 20 November 1973)

Although many literatures have been published on the synthesis and chemistry of azide compounds, the synthetic route to α,β -unsaturated α - and β -azidocarboxylic esters (3 and 4) has not been extended beyond the following methods: methyl α -azidocinnamates were synthesized by condensation of methyl azidoacetate and arylaldehydes¹⁾ and methyl α -azidopropenoate and methyl β -azidocinnamate by addition of iodo azide to the corresponding olefinic compound and successive elimination of hydrogen iodide,²⁾ and β -azido- α -butenoate by addition of sodium azide to the corresponding allenic compound.³⁾


On the other hand, it is known that the reaction of nitroolefin with sodium azide or hydrazoic acid gave the corresponding substitution product $(triazole)^{4,5}$ or addition product (nitroazide),⁶⁾ however, simple substitution of the nitro group with azide group was never reported.

In this paper, we wish to report the novel synthesis of $\underline{3}$, $\underline{4}$ or 4-ethoxycarbonyl-1,2,3-triazole derivatives ($\underline{5}$) by the reaction of ethyl α,β -unsaturated α - or β -nitrocarboxylates ($\underline{1}$ and $\underline{2}$) with sodium azide.

When mixture of E- and Z-isomer of $\underline{1}$ was treated with sodium azide in dry dimethylformamide at room temperature for 1 hr, compound $\underline{3}$, $\underline{4}$, and $\underline{5}$ as main product, were obtained. Compound $\underline{5}$ was obtained colorless crystals, and $\underline{3}$ and $\underline{4}$ were separated by chromatography on silica-gel column by elution with a mixture of petroleum ether and benzene (2 : 1) as pale yellow oils, respectively. While E- or Z-isomer of $\underline{2}$, under similar conditions, reacted with sodium azide to give

7

 $\underline{3}$, $\underline{4}$ as main product, and $\underline{5}$, at the almost same ratio, respectively. All products are confirmed to be one chemical species, respectively, by TLC and NMR. It is supposed that compounds $\underline{3}$ and $\underline{4}$ are stereochemically and thermodynamically stable E-conformer, because the products are considerably stable against to temperature and light.²⁾ The structure of $\underline{3}$, $\underline{4}$ and $\underline{5}$ was chracterized with elementary and spectroscopic (IR and NMR) analyses and independent preparation of $\underline{3}$ and $\underline{4}$.

a; $R=CH_3$, b; $R=C_2H_5$, c; $R=n-C_3H_7$, d; $R=i-C_3H_7$, e; $R=C_6H_5$. Scheme l

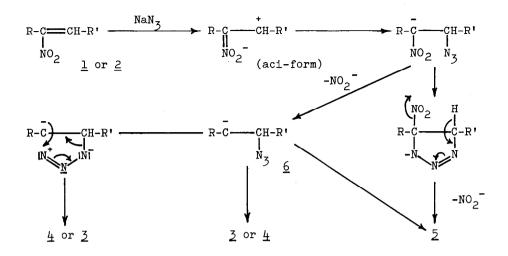
Compond	Yield %		β-H ^{a)}	G 1	Yield %		α-H ^{a)}
	From <u>2</u>	From <u>1</u>	(8)	Compound	From <u>2</u>	From <u>l</u>	(8)
,				4a	71.3	8.6	5.51
3b	6.5	8.6	6.18t	4b	41.4	5.1	5.48
3c	12.0	8.5	6.15t	4c	28.6	4.2	5.48
3d	13.5	21.5	6.02d	4d	31.0		5.48
3e	14.5		6.91s	4e	30.5		5.77

TABLE 1

a) 100 MHz, measured in CDCl₃.

Compound	Yield %		mp ^o c ^{a)}	-NH- (S) ^{b)}	
	From <u>2</u>	From <u>1</u>			
5b	2.2	46.5	114 - 115	13.95	
5c	12.7	55.8	83 - 84	14.38	
5d	11.2	51:5	86 - 87	14.22	
5e	27.0	58.5	48 - 49	12.23	

TABLE 2


a) Recrystallized from ethanol to give colorless prisms.

b) 100 MHz, measured in CDCl₃.

In the IR spectra, compound $\underline{3}$ and $\underline{4}$ showed the characteristic azide absorption of (2100 - 2120 cm⁻¹, strong) and of carbon-carbon double bond (1618 - 1630 cm⁻¹, middle), while compound $\underline{5}$ showed imino hydrogen (3080 - 3105 cm⁻¹, weak) and carbon-nitrogen double bond (1587 - 1588 cm⁻¹, strong). In the NMR spectra, vinyl proton of $\underline{4}$ in the α -position appeared at $\mathbf{\$}$ 5.48 - 5.77 region as singlet, while that of $\underline{3}$ in the β -position at $\mathbf{\$}$ 6.02 - 6.91 region, coupled variously with the protons in the $\mathbf{\intercal}$ -position. In compound $\underline{5}$, characteristic imino hydrogen signal was observed in lower magnetic field ($\mathbf{\$}$ 12.23 - 14.38) as broad singlet, as shown in Table 2.

To confirm the structure of $\underline{3}$ and $\underline{4}$, the reaction of ethyl E-3-chloro-2-propenoate with sodium azide and that of benzaldehyde with ethyl azidoacetate were successifully performed to afford $\underline{4b}$ and $\underline{3e}$, respectively. However, attempted preparation of $\underline{3}$ from ethyl 2-bromo-2-propenoate and sodium azide and the conversion of $\underline{3}$ or $\underline{4}$ into $\underline{5}$ under several conditions were unsuccessful.

The latter fact indicates that nucleophilic attack of azide ion at the α - or β -position of aci-form of <u>l</u> or <u>2</u> was followed by elimination of nitro group to give <u>5</u> and carbene intermediate (<u>6</u>),⁴ which subsequently stabilized to give ole-finic azide or isomerized to the corresponding isomer by intramolecular addition -elimination of azide group as shown in Scheme 2. The compound <u>5</u> might be formed by either the concerted cyclization-elimination reaction of azide-nitro carbanion and cyclization of the carbene intermediate.

In the case of 1: R = ethoxycarbonyl group, R' = alkyl or phenyl group. In the case of 2: R = alkyl or phenyl group, R' = ethoxycarbonyl group.

Scheme 2

REFERENCES

- 1) H. Hemetsberger, D. Knittel, and H. Weidmann, <u>Mh. Chem</u>., <u>100</u>, 1599 (1969).
- 2) A. Hassner and F. Fowler, <u>J. Org. Chem</u>., <u>33</u>, 2686 (1968).
- G. R. Harvey and K. W. Ratts, <u>ibid</u>., <u>31</u>, 3907 (1966).
- 4) N. S. Zefirov, N. K. Chapovskaya, and V. V. Kolesnikov, <u>Chem. Commun</u>., <u>1971</u>, 1001.
- 5) H. U. Blank and J. J. Fox, <u>J. Amer. Chem. Soc</u>., <u>90</u>, 7175 (1968).
- T. Takamoto, H. Tanaka, and R. Sudoh, <u>Chem. Lett</u>., <u>1972</u>, 1125: T. Sakakibara,
 R. Sudoh, and T. Nakagawa, <u>J. Org. Chem.</u>, <u>38</u>, 2179 (1973).